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Abstract. We show that a recently found non-minimal version of N = 1 Poincare super- 
gravity with (28 + 28) degrees of freedom is reducible to the non-minimal Breitenlohner 
set, in agreement with our earlier result that there exist at most five irreducible versions 
with auxiliary fields of spin up to one. 

One way of understanding Poincare supergravity is through a superconformal theory 
broken by the introduction of scale or compensating multiplets, the several off -shell 
versions being due to different choices of these multiplets (Kaku et a1 1978, Kaku 
and Townsend 1978, Townsend and van Nieuwenhuizen 1979a, b). Recently, Kugo 
and Uehara (1982) have applied the superconformal theory to obtain the non-linear 
structure of the two new (20+20) non-minimal sets found by the authors (Rivelles 
and Taylor 1982a), and have also claimed that many more irreducible sets of auxiliary 
fields could be built by considering extra scale multiplets, with a (28 + 28) set given 
as an example (Kugo and Uehara 1982). This is in contradiction with our result that 
at most five irreducible sets of auxiliary fields with spins up to one can exist (Rivelles 
and Taylor 1982b, see also Sohnius and West (1983) for one of these sets). We 
elucidate the question by showing that the (28+28) set is in fact reducible to a 
particular form of the (20 + 20) non-minimal Breitenlohner set (Breitenlohner 1977a, 
b) and, contrary to Kugo and Uehara (1982) arguments, all other sets (apart from, 
at most, the five irreducible ones) should be reducible. 

The scale multiplets which give rise to the known sets of auxiliary fields are: chiral 
(old minimal set (Stelle and West 1978, Ferrara and van Nieuwenhuizen 1978)), real 
linear (new minimal set (Sohnius and West 198 l)), complex linear (Breitenlohner 
(1977a, b) non-minimal set), chiral and real vector (first new non-minimal set (Rivelles 
and Taylor 1982a)) and real linear and real vector (second new non-minimal set 
(Rivelles and Taylor 1982a)). The PoincarC supergravity action is then obtained by 
a choice of the scale multiplet and a set of gauge fixing conditions (Kaku et a1 1978, 
Kaku and Townsend 1978, Townsend and van Nieuwenhuizen 1979a, b, Kugo and 
Uehara 1982). On the other hand the different sets of auxiliary fields found by Rivelles 
and Taylor (1982b; for one of these sets see Sohnius and West (1983)) were shown 
to be due to different choices of auxiliary irreps together with the condition that the 
supersymmetry transformation rules for the redefined fields be free of non-local terms. 
The aforementioned sets of auxiliary fields correspond, respectively, to the following 
choices of auxiliary irreps (O) ,  (i;), ( O , z A ,  T A ) ,  (0,  0, 4:) and (0, 42, 5:) (y:  means 
an irrep with superspin y and parity *1 for the boson fields; for more details see 
Rivelles and Taylor (1983a) (see also Sohnius and West 1983)). The correspondence 
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between the two formulations is easily seen since the irrep content of the scale 
multiplets coincides precisely with those of the auxiliary irreps in each case. In detail 
the irrep content of the scale multiplets is the following: chiral (O), real linear (ti), 
complex linear (0, $2, $1) and real vector (0, i;). 

For the (28+28) set presented by Kugo and Uehara (1982) two scale multiplets 
are needed: the complex linear and the real vector. However, the last one is a 
submultiplet of the first one (as their irrep content shows), so that the real vector 
multiplet can be set to zero (without going on-shell) showing the reducibility of the 
model. Notice that this cannot be done with the new non-minimal sets since after 
setting either the chiral or real linear multiplets to zero we would end up with an 
even number of fermions. 

The reducibility of the (28 + 28) model can also be shown at the component level. 
First we note the following misprints in Kugo and Uehara (1982): the last terms in 
equations (35, d ,  e )  have the wrong sign; in equation (35, c )  Z +Z2; in equation (35, 
e )  the last 2 must be replaced by Z2 and in equation (35, n )  the factor should be 
replaced by 2, as can be seen, for example, from requiring invariance of the Lagrangian 
of equation (33) of Kugo and Uehara (1982). 

We can now set Z = 0 which implies H = K = E,  = C = 0. All these last equations 
are equivalent and allow A. to be solved for in terms of the other fermions. This 
solution is uniquely given by replacing A. by the spinor A in the real vector multiplet 
V and the scalar f by the corresponding scalar in that multiplet. Thus we take (in 
the notation of Kugo and Uehara (1982)) the combinations 

A =  A o - $ ( ~ / c Y ) A I  +$(P/.)iy~dZ,+t(p/cu)iy,y - R -$dZ 
D =f-icl -Sp2/.)n~ -S(p/a)a’”Bi +t(p/.)(077~”-a,a”)h,, 

(1) 

and then we may set ’1 = D = 0 in addition to the above. This is clearly erasing all 
of the (8 + 8) components (C, Z, H,  K, E,,,, A, D )  of V. This erasure can be done 
without going on-shell, since the fields in V only transform into each other, and setting 
them to zero does not disturb the transformation laws of the remaining fields. Further- 
more, the transformations of the set V preserve the condition V = 0. The replacement 
(1) in the linearised Lagrangian is also straightforward. The new terms in the 
Lagrangian involving the non-zero fields A I ,  ZZ ,  $,, h,, in (1) always appear when 
multiplied either by C or 2 ;  they therefore disappear on setting V to zero. Thus the 
subspace is an invariant subspace, and the (28 + 28) representation is reducible. 

The transformation rules now reduce (using the notation of Kugo and Uehara 
(1982) with y : =  +1, ‘+,” =&[y,, y y ] - ,  and metric diag (1, 1, 1, 1)) to 

ahwv = k~(,@,, 
1 

SrL, =D,E -aiyssA, 3 -$y,(Hl +iysH2+iy&+$iySX)~  
&?y 1-2~1ysA1+iE,dZ2+&Ey - L - ’  * R  

6H 2 - - -2~A1+aEiy~#Z~+&IEiy~y 1- R 
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and the action is now 

To show the closure of the algebra we just need to compare this model with the 
Breitenlohner set of auxiliary fields (Breitenlohner 1977a, b). Since, as far as we 
know, the transformation rule for this last set has not been published (Rivelles 1982) 
in its full form (with the n dependence) we will give it here. The transformation rules 
and action are (Rivelles 1982) 

ah,, = $ E Y ( , ~ , ,  

64, =Due +an-’iy5s[(3-n)gM -3(1 -n)a,]-kiu,,y5sg” +;?,(sf -iy5sg) 

Sg, = g(3 1 - n)FiysR, -~nEiu,,y5Ry +&Fia,,y5d”A +$Eiy5a,A +$Eiy,ysx 
Sa = L -  1 , 2eiy5~, ,  + T ( I  -n) - ’ (2~iu , .y~  a”A -ciy5 a,A +diyrysx) 

with -cc < n <CO, n # 0, 1. After performing the following field redefinitions in (2): 

obtain the set (3) with n = -1, where our parameter n is related to that of Siege1 and 
Gates (1979), nSG, by nSG = -in. Thus the set (2) is automatically closed and it is a 
version of the Breitenlohner set. 

We can apply the same argument to show the reducibility of the other proposed 
version (Kugo and Uehara 1982) involving one chiral and three real vector scale 
multiplets: it should reduce to the first new non-minimal set (Rivelles and Taylor 
1982a). Thus, just adding on new scale multiplets and choosing gauge fixing conditions 
does not necessarily produce new irreducible sets of auxiliary fields. The number of 
such irreducible sets remains at most five. 

We add finally that if we modify our definition of reducibility so as to allow for 
multiples of irreducible multiplets to be regarded as reducible to the irreducible 
multiplet itself, then even the two new cases (Rivelles and Taylor 1982a) are reducible; 
we discuss this in detail elsewhere (Rivelles and Taylor 1983b). 

HI = -if, H2 = $8, A ,  = g, - 2a,, I?,, = a, - g,, B ,  2 1  = TU,, A 1 = $ 7 5 ~ ~  and 2 2  = T A ,  1 we 
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